
 
 

 

Python Programming Without Libraries 

Introduction-Python Programming Without Libraries 

This report is based on extensive research and implementation of different machine learning 

algorithms that will be implemented in the software part of this project. The system provides 

book recommendations based on analysis of historical data of book details and user 

pReferences. The system implements different machine learning algorithms and uses python 

language to implement those algorithms into the datasets. Based on these algorithms, a 

correlation between users and books are found. Based on these correlation results, 

recommendations to users are made. For the implementation, euclidean distance, Minkowski 

distance, spearman correlation, Chebyshev distance, Hamming distance, cosine similarity, 

and Pearson correlation have been done. Based on these results and input from users, a 

recommendation system has been built. 

Implementation and Justification 

All the implementations in this project have been done to meet specific requirements. 

Decisions related to choosing and implementing different algorithms required in-depth 

knowledge of different machine learning algorithms and their application areas. The 

Euclidean distance has been used for this implementation as this helps identify the 

dissimilarity and similarity between users. This algorithm has a heavy implementation in 

clustering in machine learning. It is the most commonly used distance measure algorithm that 

is used in machine learning projects for distance calculation when the variables are 

continuous. In addition, it is the most suitable algorithm when the implementation is done 

between two columns or data frames with integer or float values (Machinelearningmastery, 

2021). 

The Minkowski distance has been used in this report for measuring the distance between the 

nearest variables present in the dataset. It is helpful while finding the similarity of distances 

between two vectors. In addition, in machine learning, Minkowski distance is used for 

determining distance in sizes. In addition, hamming distance will be implemented for 

measuring the distance between two length lines with equal length. It is used for different 

areas of error correction and comparison of opposing datasets (Datascience, 2020). As the 

project work includes finding correlations and similarities between users and books, these 

algorithms are used for the specific reasons that are already mentioned in their descriptions. 



 
 

 

The project work includes works with three datasets such as details of books, users, and user 

ratings; these algorithms are used for finding differences between users and books for help 

in building recommendation systems. 

In addition, the spearman correlation has been chosen for working with the monotonous 

relationships. As the datasets that are selected for this work includes high dependency for 

the recommendation system, the spearman correlation will help in finding the correlation on 

monotonous values in datasets. Hence, this algorithm is important for this implementation 

(Towardsdatascience, 2020). 

In addition, Chebyshev distance has been used for the implementation of the projects for 

finding distance similarities and cluster entities between entries in datasets that are common 

in nature. In the case of working with various groups of data, these measures are 

implemented (Sciencedirect, 2021). Cosine similarity is used for calculating the similarity 

between users and the similarity between different books. The relation is mapped to similar 

datasets and finds the similarity. More the value, the more the similarity will be. Higher 

similarity helps in providing recommendations which is the aim of this project. For this reason, 

this algorithm has been chosen and used in this implementation (Sciencedirect, 2020). 

Structure of program 

The implementation of the program starts with loading datasets in a jupyter notebook. Here, 

three datasets are added, such as book reviews, books, users. All these datasets are in csv 

format. In the first module of the program, all the datasets are loaded, and a dictionary for 

user preference has been built. This dictionary contains user ids, ISBN, Book titles, authors, 

and all other relevant details from all three datasets. 

After completing this task, the second module will be built. This module includes different 

functions for implementing distance measuring algorithms. These algorithms will provide 

similarity outcomes between users and books. The functions used are Euclidean distance, 

Minkowski distance, spearman correlation, Chebyshev distance, Hamming distance, cosine 

similarity, and Pearson correlation. These functions will calculate distance and similarity 

among datasets created data frames targeted to different columns. All these functions will 

take three parameters from user preferences. 

After this implementation, the programme will be developed for computing similarity between 

books as well. This function will come under the similarity module. 

The last part of the program will include a book recommendation system which will include 

taking input from users and providing book recommendations based on cosine similarity and 



 
 

 

distances that were implemented earlier. This part includes finding similar users from the 

existing database and based on their similarity count and this program will provide book 

recommendations to the user. A pictorial representation of structure of the program is 

provided below. 

 

Figure 1: Structure of Program 

Design of functions 

Design of the algorithms is based on the user ids that are available after the calculation of 

user preferences. With the screenshots of codes, functionalities will be defined. 

 

Loading Data 

 

Figure 2: Loading Data Into Data frames 

The above figure shows the codes for loading data into data frames. For doing this task of 

loading data, pandas library has been imported as pd and data read by using pd. Top 5000 

data has been selected for ease of calculations. 

 

Figure 3: Output after merge operation of user and rating data 

The above output shows the result after merge of two datasets, user and rating. Inner join 

has been done based on User-ID. 

 

Figure 4: Output of merge operation on output 1 and book data 

The above output shows the output after the merge operation on output one and output 2. 

Basically, after this operation, all the datasets are merged based on the same id.  

 

Figure 5: User Preference dictionary 

Figure 4 shows the user preference that has been created from the output 3. It includes 

selected columns based on user id. For doing this, columns have been selected from output 

3 showing output for individual users. 

The above figure represents the function of calculating the Euclidean distance between user 

id. For doing this task, from the math library of python, the sqrt function has been imported 



 
 

 

that will be used in the function for mathematical calculations. In addition, from scipy.spatial, 

distance, euclidean and cityblock has been imported. In the data frame of eu1 from output1, 

the top 715 data has been extracted as there is the same number of data in the user-

preference data frame. In the function Euclidean_Dist, user-preference, eu1 has been 

passed, and their User-ID has been used for calculating the distance between user Ids. 

The figure 6 shows the call of the function Euclidean_Dist and passing data frames named 

eu1 and user-preference for calculation of distance between user ids. In addition, it shows 

the result. 

The Minkowski function has been developed for calculating the Minkowski distance of user 

ids. For this function, the math library of python is needed. Hence, the library has been 

The program implements hamming distance. A function has been made for calculating 

Hamming distance. The value of x and y has been passed in the function. The value of i and 

count is set to 0. Then the while loop executes till the length of i reaches the length of x, and 

calculation is made based on these areas. Then in the print function, the hammingDist 

function is called by sending x and y values and printing the output. In this case, the output is 

28. 

 

 Justification for Similarity Metric 

For calculating the similarities, different similarity matrices present in the machine learning 

algorithm libraries concepts have been used. In this project, similarity matrices such as 

euclidean distance, manhattan distance, cosine similarity, and many other functions have 

been formed and used. According to the euclidean matrices, different distances have been 

shown in the form of matrices. The result of Minkowski distance has come out as 8685.000, 

which is a justified value for calculating similarities. The Spearman correlation matrix provides 

the output as 0.767, which is very close to the desired value. Hence, the accuracy of this 

matrix is very high. Hamming distance has provided the value as 28. The Chebyshev 

Distance output came as 1616. Cosine similarity has come as 0.999, which is a very high 

similarity matrix with very high accuracy. In addition, the Pearson correlation has given an 

output of 0.735, which is a very high correlation result. In addition, the similarity between 

users and books depending on inputs are 0.44 and 0.66, respectively. 0.66 is a high relation, 

and 0.44 is a very low relation. These results will depend on the user inputs. The 

recommendation of these areas will be based on user similarity. The similarity will be 



 
 

 

calculated on the basis of their activity, such as ratings of their books and similar books from 

their choices. For all these operations, cosine similarity has been used. And depending on 

the result, the recommendation has been made. Hence, from all these outputs, it can be 

shown that the outputs are very justified, and the most accurate value has come from cosine 

similarity and Spearman correlation matrices. 

 

Self Reflection 

The project has been done based on research on different areas of machine learning. 

Machine learning programs include different algorithms for ease of execution of complex 

programs. I have done research on different algorithms for measuring distances between 

users and books such as euclidean distance, Minkowski distance, spearman correlation, 

Chebyshev distance, Hamming distance, cosine similarity, and Pearson correlation. All these 

functions serve different purposes. Through these algorithms, differences between similar 

entities are calculated. In this case of the project, similarities of books and different users are 

calculated. Mathematical explanation and deep understanding regarding equations and 

implementations was the toughest part of the job. Despite that, the implementation of these 

algorithms is heavily dependent on the proceeding of data. This took some additional time for 

implementation. In addition, for calculating the Spearman correlation, the alpha value has 

been set to 0.05. Changes in this value will generate different results. Hence, this is a 

challenge that will be faced in case of further usages of spearman correlation. In the case of 

calculating Minkowski distance, the p-value has been to 3 by default. In case of changes in 

the value, again, the result will be changed. These are the challenges that I have faced while 

developing this project. In addition, all the functions have been generated from scratch in 

spite of using the inbuilt functions that are available in the python library. Hence, this has 

taken additional time to develop. In task 4, a recommendation system has been developed 

where there is a requirement of taking user input. Users are required to provide user ids and 

books ISBN, and based on their inputs; the recommendation will be made by calculating the 

similarity matrix. Hence changes in functions have been difficult to implement. All over, the 

project has helped me gain in-depth knowledge in different areas of python language as well 

as its usages in machine learning implementations. This project required solo work and self-

knowledge. Hence, this has been an amazing experience for me as it helped in upskilling my 

knowledge. 



 
 

 

 

Conclusion 

The overall project work and the report include a deep understanding of different areas of 

machine learning model and algorithms. For building this recommendation system, different 

machine learning algorithms such as euclidean distance, Minkowski distance, spearman 

correlation, Chebyshev distance, Hamming distance, cosine similarity, and Pearson 

correlation have been used for calculating similarity and distances between users and books. 

These findings have been used in the final part that is building the book recommendation 

system. The system takes input from users in the form of their id and provides book 

recommendations by using different machine learning algorithms. In addition, this project 

developed a similarity matrix for users and books so that it becomes helpful for finding similar 

books. The recommendation system that has been developed provides recommendations 

with maintaining higher accuracy. In the future, the system can be developed further by 

implementing more advanced machine learning algorithms. Hence, this will provide 

recommendations with better accuracy. In addition, the system also provides similarity scores 

for books which help in identifying similar books for recommendations. The last part includes 

a recommendation system, where the user provides input and the system works by using 

those inputs. Machine learning algorithms have been used for this operation. 
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Appendix 

Task1 

import pandas as pd 

import numpy as np 

,) 

,>,> 

user.columns 

rating.columns 

book.columns 

rating, 

,) 

output1 

book,,) 

output2.columns 

output2 

"ISBN", "Book-Title", "Book-Author", "Year-Of-Publication", "Book-Rating"]] 

user_pereference.info() 

 

Task 2 

euclidean distance 

from math import sqrt 

from scipy.spatial.distance import cityblock, euclidean 

> 

eu1.head() 

def Euclidean_Dist(user_pereference, eu1,> 

return np.linalg.norm(user_pereference[cols].values - eu1[cols].values, 



 
 

 

> 

Euclidean_Dist(user_pereference, eu1) 

minkowski distance 

>> 

from math import * 

from decimal import Decimal 

def p_root(value, root): 

/ float(root) 

return round (Decimal(value) ** 

Decimal(root_value), 3) 

def minkowski_distance(x, y, p_value): 

# pass the p_root function to calculate 

# all the value of vector parallelly 

return (p_root(sum(pow(abs(a-b), p_value) 

for a, b in zip(x, y)), p_value)) 

# Driver Code 

> 

print(minkowski_distance(x, y, p)) 

# generate related variables 

from numpy.random import rand 

* 20 + (rand(1000) * 10) 

data1.shape 

Spearman correlation 

import matplotlib.pyplot as plt 

>> 

from scipy.stats import spearmanr 

coef, y) 

print('Spearmans correlation coefficient: %.3f' % coef) 

> 

if p > alpha: 

print('Samples are uncorrelated (fail to reject H0) % p) 

else: 

print('Samples are correlated (reject H0) % p) 



 
 

 

chebyshev distance 

import scipy 

from scipy.spatial import distance 

scipy.spatial.distance.chebyshev(x,y) 

Hamming distance 

def hammingDist(x, y): 

>> 

while(i < len(x)): 

if(x[i]> 

count> 

i> 

return count 

print(hammingDist(x, y)) 

pearson correlation 

>> 

from scipy.stats import pearsonr 

corr,> 

print('Pearsons correlation: %.3f' % corr) 

cosine similarity 

pip install similarity 

import math 

>> 

def cosine_similarity(co1, co2): 

return sum([i*j for i,j in zip(co1, co2)])/(math.sqrt(sum([i*i for i in co1]))* math.sqrt(sum([i*i for 

i in co2]))) 

cosine_similarity(co1,co2) 

print(co1, co2, cosine_similarity(co1,co2)) 

 

Task 3 

>>>> 

import nltk 

nltk.download('stopwords') 



 
 

 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

> =[] 

# remove stop words from the string 

for w in co1 if not w in sw} 

for w in co2 if not w in sw} 

# form a set containing keywords of both strings 

> 

for w in rvector: 

if w in X_set: l1.append(1) # create a vector 

else: l1.append(0) 

if w in Y_set: l2.append(1) 

else: l2.append(0) 

> 

# cosine formula 

# cosine formula 

for i in range(len(rvector)): 

> / float((sum(l1)*sum(l2))**0.5) 

print("similarity: ", cosine) 

 

Task 4 

Similarity of Two Books 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

> =[] First Book ISBN") Second Book ISBN") 

# remove stop words from the string 

for w in co1 if not w in sw} for w in co2 if not w in sw} 

# form a set containing keywords of both strings 

> 

for w in rvector: 

if w in X_set: l1.append(1) # create a vector 

else: l1.append(0) 



 
 

 

if w in Y_set: l2.append(1) 

else: l2.append(0) 

> 

# cosine formula 

for i in range(len(rvector)): 

> / float((sum(l1)*sum(l2))**0.5) 

print("similarity: ", cosine) 

Similarity of Two User 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

> =[] First User") Second User") 

# remove stop words from the string 

for w in co1 if not w in sw} for w in co2 if not w in sw} 

# form a set containing keywords of both strings 

> 

for w in rvector: 

if w in X_set: l1.append(1) # create a vector 

else: l1.append(0) 

if w in Y_set: l2.append(1) 

else: l2.append(0) 

> 

# cosine formula 

for i in range(len(rvector)): 

> / float((sum(l1)*sum(l2))**0.5) 

print("similarity: ", cosine) 
 


